- 1. Answer the following questions relating to the solubility of the chlorides of silver and lead. - (a) At 10° C, 8.9×10^{-5} g of AgCl(s) will dissolve in 100. mL of water. - (i) Write the equation for the dissociation of AgCl(s) in water. - (ii) Calculate the solubility, in mol L⁻¹, of AgCl(s) in water at 10°C. - (iii) Calculate the value of the solubility-product constant, K_{sp} , for AgCl(s) at 10°C. - (b) At 25°C, the value of K_{sp} for $PbCl_2(s)$ is 1.6×10^{-5} and the value of K_{sp} for AgCl(s) is 1.8×10^{-10} . - (i) If 60.0 mL of 0.0400 M NaCl(aq) is added to 60.0 mL of 0.0300 M Pb(NO₃)₂(aq), will a precipitate form? Assume that volumes are additive. Show calculations to support your answer. - (ii) Calculate the equilibrium value of [Pb²⁺(aq)] in 1.00 L of saturated PbCl₂ solution to which 0.250 mole of NaCl(s) has been added. Assume that no volume change occurs. - (iii) If 0.100 M NaCl(aq) is added slowly to a beaker containing both 0.120 M AgNO₃(aq) and 0.150 M Pb(NO₃)₂(aq) at 25°C, which will precipitate first, AgCl(s) or PbCl₂(s)? Show calculations to support your answer.